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Abstract

An Euler flow solver and a thin-layer Navier-

Stokes flow solver have been used to numerically sim-

ulate the supersonic lee-side flow fields over delta

wings. These lee-side flow fields have been ex-
perimentally observed over sharp-leading-edge delta

wings through parametric variations in leading-edge
sweep, angle of attack, and Mach number. The

flow fields over three delta wings with 75 ° , 67.5 ° ,

and 60 ° leading-edge sweep were computed over an

angle-of-attack range of 4° to 20 ° at a Mach number
of 2.8. The Euler code and the Navier-Stokes code

predict the primary flow structure equally well when

the flow is expected to be clearly separated or clearly

attached at the leading edge based on the Stanbrook-

Squire boundary. The Navier-Stokes code is capable

of predicting both the primary and the secondary
flow features for the parameter range investigated.
For those flow conditions where the Euler code did

not predict the correct type of primary flow struc-
ture, the Navier-Stokes code illustrated that the flow

structure is sensitive to boundary-layer model. In

general, the laminar Navier-Stokes solutions agreed

better with the experimental data, especially for the

lower sweep delta wings. Results from the computa-

tional study and a detailed reexamination of the ex-

perimental data resulted in a refinement of the flow
classifications. This refinement in the flow classifi-

cation results in the separation bubble with shock

flow field as the intermediate flow pattern between

separated and attached flows.

Summary

Through previous experimental observation of the
lee-side flow of sharp-edged delta wings in supersonic

flow, six distinctly different types of flow fields have
been identified and classified as a function of angle

of attack and Mach number normal to the leading

edge. A comparison between the experimental data

and computations obtained from an Euler code and
a Navier-Stokes code was conducted at a constant

Mach number of 2.8. Three leading-edge sweeps,

75 °, 67.5 °, and 60 °, were examined over an angle-

of-attack range of 4 ° to 20 ° . In the experiment and

the computations, span distance was held constant

and the Reynolds numbers based on root chord, cor-

responding to decreasing leading-edge sweep, were
3.7 × 106, 2.4 x 106, and 1.7 × 106, respectively. The

Euler code successfully predicts primary flow struc-

tures only when the flow conditions normal to the

leading edge clearly dictate either the separation or
the attachment of the flow at the leading edge based

on the Stanbrook-Squire boundary. The Euler code is

incapable of predicting secondary flow features. The

thin-layer Navier-Stokes computational code success-

fully predicts the primary and secondary flow struc-

tures of the six flow regimes and the effect of varying

leading-edge sweep and angle of attack. A compari-
son of laminar and turbulent Navier-Stokes solutions

indicates that the laminar-boundary-layer model is

more accurate in predicting the primary and sec-

ondary flow features, especially for the lower sweep

delta wings, which have lower Reynolds numbers at
the trailing edge. In addition, the Navier-Stokes code
indicated detailed flow structures not observed in the

qualitative experimental data available. The compu-

tational study prompted a reexamination of the ex-

perimental data such that a refinement of the flow

classifications is proposed. Basically, the separation
bubble with shock flow field is identified as an in-

termediate flow pattern between the separated and

attached flow regions.

Introduction

The development and experimental validation

of advanced aerodynamic computational techniques

such as Euler and Navier-Stokes codes will eventually

provide aerodynamic design capability heretofore not
possible. In the past, aerodynamic design methodol-

ogy for low supersonic Mach numbers has been lim-

ited to a relatively simple flow model. For exam-

ple, in the 1960's and 1970's, wing designs (ref. 1)

for SST or fighter applications were based on solu-
tions to the linearized potential equation and were
therefore limited to attached subcritical cross flows.

More recent high-lift wing designs (ref. 2) have em-

ployed methodology based on solutions of the nonlin-
ear full-potential equations, which can treat mixed

subcritical/supercritical attached cross flows and
model weak shocks. These designs are still restricted
to attached flows because of the irrotational, in-

viscid assumptions of full-potential theory. Vortex

flap wing designs (ref. 3) assume the existence of
leading-edge vortices and have employed a method-

ology based on a combination of linearized poten-

tial theory and empirical data. The aerodynami-

cist prefers not to be limited to a particular type
of flow and likes to make optimum use of both at-

tached and separated flows. In order to achieve this,

design methodologies and procedures must be based
on rather unrestricted aerodynamic computational

techniques. Recently reported results (refs. 4-11)

indicate that algorithms capable of solving the Eu-
ler and Navier-Stokes equations are sufficiently de-

veloped and that computer processing speeds have

increased enough to begin the necessary calibration

process that leads to incorporating Euler and Navier-

Stokes solvers into the wing design process.



Severalresearchershaveexperimentallyinvesti-
gatedand classifiedthe lee-sideflow over highly
sweptwings in supersonicflow. Stanbrookand
Squire(ref.12)classifiedseparatedandattachedlee-
sideflowregimesby usingthesimilarityparameters
Machnumberandangleof attacknormalto thelead-
ing edge.Thisworkhasbeenextendedfurtherby
Whiteheadet al. (ref. 13),Szodruchand Ganzer
(ref. 14),andMiller andWood(ref. 15). Theclas-
sificationof lee-sideflowsbasedon the wind-tunnel
experimentreportedin reference15is presentedin
figure1. Theflowchartoffigurel(a) classifiesthesix
flowpatterns,observedexperimentally,asfunctions
of Machnumberandangleof attacknormalto the
leadingedge.Thehatchedlinesrepresentthebound-
ariesbetweenthedifferentflowregions.Thecentral
verticalboundary(up to o_N -- 30 °) of figure l(a)

is similar to the classical Stanbrook-Squire boundary

between separated and attached flow. The flow types

to the left of this boundary are as follows, starting

at the bottom of the figure: leading-edge separation

bubble with no shock, primary and secondary vortex

with no shock, and primary and secondary vortex
with shock. The flow types to the right of this central

boundary, in the same order, are as follows: shock
with no separation, shock-induced separation, and

leading-edge separation bubble with shock. Sketches

of each flow pattern are presented in figure 1 (b). The

sketches are based on the vapor-screen photographs

obtained in the experimental test.

The purpose of this investigation is to calibrate

an existing Navier-Stokes computational code and an

existing Euler computational code for sharp-leading-
edge delta wing flows at supersonic speeds. The

approach is to compare results from these two com-

putational codes with experimental results. The

comparisons will be conducted on three delta wings

(75 °, 67.5 °, and 60 ° leading-edge sweep with span

held constant) over an angle-of-attack range of 4° to
20 ° at a constant Mach number of 2.8. The Reynolds

number, based on root chord, varied with leading-
edge sweep from 3.7 × 106 for the 75 ° delta wing to

1.7 x 106 for the 60 ° delta wing. The effect of the

boundary-layer model (laminar or turbulent) on the

Navier-Stokes computations will also be examined.

Symbols

c root chord, in.

Cp surface pressure coefficient

F parameter used within the turbulence
model in determining the length scales

and thus the eddy viscosity

M free-stream Mach number

M N Mach number normal to the leading

edge, McosALE(1 + sin 2 a tan 2 ALE) 1/2

Po free-stream total pressure

Po,l local total pressure

r leading-edge radius in the cross-flow

plane, in.

Re Reynolds number

s distance along a ray extending normal
from the surface, in.

x longitudinal position from wing apex

y spanwise position from wing centerline

z vertical position from wing upper surface

a angle of attack, deg

otN angle of attack normal to the leading

edge, tan -1 (tan a� cos ALE), deg

As distance from the surface of the wing to

the first grid point, in.

A leading-edge sweep, deg

Subscripts:

LE leading edge of the wing

max maximum of a function

TE trailing edge of the wing

Flow structure abbreviations:

CS cross-flow shock

CV core of the vortex

FS feeding sheet of a vortex

R reattachment of the flow to the surface

S separation of the flow from the surface

SIS shock-induced separation

Flow structure subscripts:

LE localized at leading edge

p primary

s secondary

si shock-induced

sm smooth

t tertiary

Experimental Test

The experimental data used extensively through-

out this investigation were obtained in a wind-tunnel



experiment (ref. 15) conducted in the NASA Lang-
ley Unitary Plan Wind Tunnel (UPWT) on four
delta-wing models that varied in leading-edge sweep
(A = 75°, 67.5 °, 60 °, and 52.5 °) as shown in figure 2.
Each model had a total span of 12 in. and a thickness
of 0.3 in. at the trailing edge. The upper surface of
each model was flat, and the leading edge was made

sharp (10 ° wedge angle on the lower surface, mea-
sured normal to the leading edge). According to the
guidelines set forth in reference 16, transition strips
composed of No. 60 carborundum grit were sprinkled
on the upper surface 0.2 in. behind the model lead-

ing edge (measured normal to the leading edge) in
an attempt to ensure turbulent boundary-layer flow
over the model at attached flow conditions. The four

models were each tested at M -- 1.7, 2.0, 2.4, and
2.8 over an angle-of-attack range of 0°-20 ° and at a
Reynolds number of 2.0 × 106/ft, which corresponds
to a Reynolds number range based on root chord of
3.7× 106 to 1.3x 106 .

Each model was instrumented with a spanwise
row of pressure orifices 1 in. forward of the trail-
ing edge. In addition to the surface pressure data
obtained near the trailing edge, three types of flow
visualization data were obtained. Vapor-screen pho-

tographs provided qualitative information on the flow
field above the leeward side of the wing. Oil-flow and
tuft photographs provided information on the flow
characteristics on the model surface. Based on these

results, Miller and Wood (ref. 15) classified the flow
into six distinct types, and a chart was developed
that defines the flow type as a function of Mach num-
ber and angle of attack normal to the leading edge.
This chart is shown in figure 1(a).

Computational Study

Computational Algorithms

Navier-Stokes solver. The Navier-Stokes code

of reference 4 was selected for this investigation be-
cause it had been used previously to predict lee-
side flows over delta wings for a few selected cases.
The computational method used in the Navier-Stokes
code has been discussed in detail in references 4

and 17 through 21. The three-dimensional, time-
dependent, compressible Navier-Stokes equations are
transformed to a generalized coordinate system. The
thin-layer approximations are then applied to the
equations. The equations are in conservation form
and are solved with a finite volume approach. The
convective and pressure terms are differenced with
the upwind-biased flux-difference splitting approach
of Roe (ref. 18), whereas the shear stress and heat-
transfer terms are centrally differenced. For the

present investigation, the convective and pressure
terms are differenced using a third-order interpola-
tion of the primitive variables to the cell interfaces.
The shear stress and heat-transfer terms are differ-

enced with second-order accuracy, and the global
accuracy is second order. The upwind-biased spatial-
differencing scheme is very similar to that in ref-
erence 4, except that flux-difference rather than
flux-vector splitting is used for the convective and
pressure terms. The flux-difference splitting ap-
proach includes information about all differing waves
by which adjacent cells interact and is demon-
strated in reference 20 to be more accurate than the

flux-vector splitting approach in the boundary-layer

region.
The time-differencing algorithm used in the

Navier-Stokes code is a spatially split approximate-
factorization method. It is difficult to linearize ex-

actly the residual terms arising with Roe's flux-
difference splitting approach, and an approximate
linearization is used. The resulting implicit dis-
cretization is conservative in time and is, in practice,
similar to that used in reference 21, corresponding

to a first-order flux-vector splitting linearization in
time.

The turbulent-boundary-layer calculations are
made with an isotropic, algebraic, two-layer, eddy-

viscosity model developed by Baldwin and Lomax
(ref. 22). The model includes the modifications in-
corporated by Degani and Schiff (ref. 23) necessary
to ensure that in the presence of vortical flows the
viscous length scales are determined by the bound-
ary layer on the body or wing. The model was used
by Newsome and Adams (ref. 24) in the accurate
prediction of elliptical missile body flows at large
angles of attack and yaw. However, the turbulent-
boundary-layer model does not directly account for
many effects such as compressibility, nonequilibrium,
rotation, free-stream turbulence, relaminarization of
the boundary layer, or the location of boundary-layer
transition.

Euler solver. The Euler code of reference 5 was

selected for comparison with the Navier-Stokes code,
as it has previously been used to predict lee-side flows
over delta wings for a few selected cases. The com-
putational method used in the Euler code has been
discussed in detail in several references (see refs. 5,
25, and 26). The full three-dimensional unsteady Eu-
ler equations are transformed to a conical coordinate
system. A finite volume method is used to discretize
the equations in conservative form, and a four-stage
Runge-Kutta method is used to integrate pseudo-
unsteady equations to achieve steady-state solutions.
Boundary conditions enforce tangential flow at the
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bodysurfaceandfree-streamconditionsontheouter
boundary, which is outside the bow shock.

The Euler equations themselves contain no dissi-
pation, and the centered spatial differences are not
dissipative to lowest order. Artificial damping or vis-
cosity is required to damp out high-frequency modes
of the discrete equations and to capture shocks.
Blended fourth- and second-difference dissipation
terms are added to the discretized inviscid equations
for these two purposes, respectively.

For a sharp-edged geometry like that considered
here, a Kutta condition provides the mechanism for
locating the point at which the flow separates from
the wing to form a primary vortex. In the calcula-
tions, the Kutta condition is enforced implicitly by
the artificial damping. Because the separation point
is determined by the geometry, its position is insensi-
tive to the magnitude of both physical and numerical
viscosity for the Reynolds numbers of interest. The
artificial viscosity also provides a mechanism for cre-
ating losses. Computations and analyses have shown
that the levels of these losses are not sensitive to the

levels of damping (refs. 25 and 27).

Computational Test Matrix

The lee-side surface of a flat delta wing is geomet-
rically conical, and experimental data (ref. 28) have
shown the lee-side flow to develop conically for the
Mach number and angle-of-attack range of this inves-
tigation. Three-dimensional Navier-Stokes solutions
were obtained for selected cases to computationally
investigate the validity of the conical assumption for
sharp-leading-edge delta wings in supersonic flow.
Based on these results, it was determined that con-
ical solutions would adequately represent the flows

being investigated. The assumption of conical flows
significantly reduced the required computational re-
sources and made possible the examination of a large
number of cases.

In order to calibrate the Navier-Stokes and Euler

codes with the existing experimental data, a system-
atic approach was taken in selecting cases from fig-
ure 1(a). This computational test matrix is shown in
figure 3. For all cases in the computational matrix,
free-stream Mach number was held constant at 2.8,
with leading-edge sweep and/or angle of attack vary-

ing. This approach yielded 15 cases that covered the
6 flow types of interest.

As discussed above, the models had grit located
0.2 in. behind the leading edge in an attempt to
ensure fully turbulent boundary-layer flow over the
wind-tunnel model at attached leading-edge flow con-
ditions. However, a question arises as to the state
of the boundary layer for the flow separating at the
leading edge, reattaching near the centerline, and

4

flowing outward on the wing under a primary vor-
tex. Thus Navier-Stokes solutions were obtained

with both a laminar and a turbulent boundary-layer
model for the separated flow cases. Because of the
effects of boundary-layer model observed for sepa-
rated flow, it was decided also to investigate compu-
tationally the effect of boundary-layer model on the
attached flow cases.

Computational Solutions

Conical Navier-Stokes and conical Euler solutions

were obtained at each of the points on the com-
putational test matrix shown in figure 3. Three-
dimensional Navier-Stokes solutions were obtained

on the 75°, 67.5 ° , and 60° delta wings at a =
8°. Navier-Stokes solutions were obtained with both

a laminar- and a turbulent-boundary-layer model.
A Navier-Stokes solution with a laminar-boundary-
layer model is referred to hereafter as a laminar
Navier-Stokes solution. Likewise, a Navier-Stokes so-
lution with a turbulent boundary-layer model is re-
ferred to as a turbulent Navier-Stokes solution. A

discussion of the turbulence model and various pa-
rameters associated with the use of that model is

contained in appendix A.
The cross-sectional geometry at the trailing edge

of the configuration is used for all the conical solu-
tions. The conical self-similarity assumption implies
that this section is extended conically forward to the
apex and aft to infinity. The three-dimensional so-
lutions were obtained by modeling the surface of the
wind-tunnel models. This approach included model-
ing the nonconical nature of the lower surface. The
Reynolds number is based on root chord and is re-
ferred to as the trailing-edge Reynolds number.

Grids. The grids used with the Navier-Stokes
code were generated numerically using the code of
reference 29, which is based on the elliptic grid gen-
eration method of reference 30. Each grid associ-
ated with a conical Navier-Stokes solution consisted

of 75 radial and 151 circumferential (75 x 151) points.
Figure 4 illustrates a sample grid used in a conical
Navier-Stokes solution. This grid is located at the
trailing edge of the geometry and is in the y-z plane.
The radial grid point stretching distribution was ex-
ponential at the body, with a smooth transition to
a milder geometric stretching in the outer portion of
the grid.

In reference 31, it was determined that the type

of grid spacing through the boundary layer could
have a significant impact on the Navier-Stokes re-
sults. For example, for a turbulent boundary layer,
a stretched grid that clustered points near the sur-
face yielded more accurate results than a uniform



grid. The opposite trend was found to exist for a

laminar boundary layer. Hence, for the purposes

of this investigation, both grids are stretched, with

the grid for a turbulent Navier-Stokes solution being
more stretched than that of a laminar Navier-Stokes

solution. Figure 5 illustrates the difference in the

two grids. The turbulent-spacing grid for each ge-

ometry had a minimum spacing, As/c, of 0.00003

at the wall, where c is the root chord of the wing.

This minimum spacing was based on the criterion

of having 1-2 points in the viscous sublayer. The

laminar-spacing grid had As/c = 0.00005 for the 75 °

delta wing and As/c = 0.0001 for the 67.5 ° and 60 °

delta wings. These values were based on the criterion

of having 15-20 points in the boundary layer. Also

to be noted from figure 5 is that the leading edge

was slightly rounded, with a leading-edge radius of

r/c = 0.00002. This modification to the geometry

allowed a smoother grid about the leading edge to
be achieved for use in the Navier-Stokes code. The

span of the modified cross section was 99.9 percent

of that of the original span.

The three-dimensional grids were generated by

stacking y-z planar grids down the length of the wing.

Presented in figure 6 is the grid for the 75 ° delta wing.

The grid had 12 x-stations down the length of the

wing, as shown in figure 6(a). Figure 6(b) presents

the surface geometry at each of the 12 x-stations and
illustrates the nonconical nature of the lower surface.

A y-z planar grid was generated at each of the x-

stations in the same fashion as the conical grids were.

The grid spacing used for the conical grid of the 75 °

delta wing was also used for the trailing-edge planar

grid. The grid spacing was scaled appropriately for
the planar grids forward of the trailing edge. Each

planar grid had 66 points in the radial direction and

151 points in the circumferential direction. Shown in

figure 6(c) is an oblique view of the three-dimensional

grid.

The same approach was taken in generating the
three-dimensional grids for the 67.5 ° and 60 ° delta

wings. The size of these grids was 12 x 70 × 151

points.

Each of the grids used in obtaining the conical
Euler solutions consisted of 128 radial and 128 cir-

cumferential (128 x 128) points. Figure 7 illustrates

a sample grid. The Euler grids were generated us-

ing a code developed at the Massachusetts Institute

of Technology based on the elliptic grid generation
method of reference 29, with modifications to enforce

conditions on grid aspect ratio rather than normal

spacing at the body and outer boundaries.

Convergence characteristics. For the conical

solutions obtained by the Navier-Stokes code, a single

array of cross-flow volumes is constructed such that

the inflow and outflow planes are scaled by a conical
transformation. At each iteration, the inflow condi-

tions are updated with the results of the previous it-

eration until convergence occurs. The solutions in all

cases were impulsively started from free-stream ini-

tial conditions. Boundary conditions consisted of re-

flection conditions in the cross-flow symmetry plane,

no-slip adiabatic wall temperature conditions on the

body surface, and free-stream conditions on the outer

boundary.
The three-dimensional Navier-Stokes solutions

were obtained by first attaining conical solutions on

the y-z planar grids at the x/c = 0.1 and x/c = 1.0
stations. These conical solutions were then used

to interpolate flow field properties for the other

10 planar grids. This interpolated three-dimensional

solution was then used as a first guess in the three-
dimensional solution.

Converged laminar and turbulent Navier-Stokes
solutions were obtained for the 15 conical cases and

the 3 three-dimensional cases by using the Navier-

Stokes code and the appropriate grid. However,

a converged conical laminar Navier-Stokes solution

could not be obtained on the conical laminar-spacing

grid for the A = 75 ° , _-- 4 °, M = 2.8 case. This

case was repeated on the conical turbulent-spacing

grid and a converged laminar Navier-Stokes solution

was obtained. Also, a converged conical turbulent
Navier-Stokes solution could only be obtained for the

A = 67.5 ° , c_ = 20 ° , M = 2.8 case by reducing

a gradient comparison parameter in the minimum-

modulus limiter employed on the spatial differencing
scheme. A detailed discussion on the minimum-

modulus limiter can be found in reference 19.

A typical problem in obtaining the Navier-Stokes
solutions was that the residual entered into a limit-

cycle oscillation although flow field quantities (e.g.,

total pressure) and integrated force coefficients (e.g.,
lift coefficient) had reached an acceptable conver-

gence. This characteristic has been associated with

the minimum-modulus limiter used in the spatial dif-

ferencing scheme (ref. 19). Although not presented
here, solutions were also obtained with the flux-

vector splitting algorithm with only small differences

noted from the solutions presented here using the

fiux-difference splitting method. This observation in-
dicates that the truncation error levels are small.

In obtaining the conical Euler solutions, calcula-
tions were first obtained on coarser grids and then

interpolated for use as initial conditions on the 128 x

128 grids. The solutions were run for 500 iterations

on these grids. All cases except the A = 67.5 °,

c_ = 16° , M = 2.8 case converged to an accept-

able steady state. The general features and force

5



coefficientsfor this caseappearedsatisfactory,but
theresidualdid notreachasteady-statelevel.

Shownin thefollowingchartaresamplerun times
for thethreetypesof solutionsobtained(thetimes
arein minutesontheCRAYY-MP machine):

Typeofsolution Runtime,min
Euler 3
ConicalNavier-Stokes 20
Three-dimensionalNavier-Stokes 240

Experimental and Computational Flow
Features

The flow features as observed in the experimental

and computational data are discussed in detail here.

Examined throughout this section is the A = 75 °,

c_ = 16 °, M -- 2.8 case. The computational data

presented are those of the conical Navier-Stokes so-
lution with a laminar-boundary-layer model for the

sample case.

Figure 8 is the vapor-screen photograph for the

sample case (A = 75 °, _ -- 16 °, M = 2.8). The flow
structure consists of a primary vortex separating at

the leading edge, with a cross-flow shock occurring
at the top edge of the primary vortex. A secondary

vortex is demonstrated to form beneath the primary
vortex. These flow structures are clearly labeled in

the figure.

Color contour plots of the computational data are

presented in figure 9. Figure 9(a) presents the total

pressure ratio data (Po,I/Po), and figure 9(b) presents
the cross-flow Mach number data. The definition of

cross-flow Mach number is the same as total Mach

number except the radial component of the flow has
been subtracted from each of the velocity compo-

nents. The radial component of the flow is that which

lies along a ray from the apex. The structures ob-
served in the vapor-screen photograph (fig. 8) are
also evident and labeled in the color contour data.

However, in comparing the color contour data with
the vapor-screen photograph it is evident that the

total pressure ratio data best represent the vortical

structures as they appear in the vapor-screen photo-

graph. The cross-flow Mach number data best rep-

resent the cross-flow shock systems as they appear

in the vapor-screen photograph. As shown in fig-

ure 9, the computational solution predicted the for-
mation of a cross-flow shock between the primary

vortex and the feeding sheet of the secondary vortex.
This flow structure is not evident in the vapor-screen

photograph.
Line contour plots of the total pressure ratio

and cross-flow Mach number data are presented in
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figures 10(a) and (b). The cross-flow velocity vectors
are presented in figure 10(c). The flow structures

discussed above are also evident in this presentation

format. However, in the velocity vector data there is

evidence of a tertiary vortex beneath the secondary
vortex. This flow structure is not evident in the

contour data or the vapor-screen photograph.

Figure 11 is the oil-flow photograph for the sam-

ple case (A = 75 °, a = 16 ° , M = 2.8). Labeled
are the separation lines of the secondary and tertiary
vortices discussed above. The reattachment lines of

these vortices are not clear in the oil-flow photograph.

The particle traces of the computational solution at

the first grid point above the surface are presented

in figure 12. This form of data is regarded as a nu-

merical equivalent to the oil-flow photographs ob-

tained experimentally. The computational solution
was obtained on the trailing-edge cross-sectional ge-

ometry and was conical. Therefore, the particle trace
data were derived by imposing the computational so-
lution at each cross section of a three-dimensional

wing. Converging particle traces denote separa-

tion lines, whereas diverging particle traces denote

reattachment lines. The particle trace data demon-

strate not only the separation lines of the secondary

and tertiary vortices but also the reattachment lines
of those vortices not readily evident in the oil-flow

photograph.

Results and Discussion

Comparison of Three-Dimensional and
Conical Navier-Stokes Solutions

A comparison of the three-dimensional and coni-
cal solutions obtained with the Navier-Stokes code is

presented here. The effect of boundary-layer model
will also be examined. The three cases examined

were the 75 °, 67.5 °, and 60 ° delta wings at c_ = 8 °
and M -- 2.8. An extensive discussion of the 75 °

delta wing data is presented here. Appendix B con-
tains the computational data for the 67.5 ° and 60 °

delta wings. The computational data are presented

here in the form of total pressure ratio (Po,l/Po) con-
tours, particle trace data, and surface pressure data.

Presented in figure 13 are the data from the three-
dimensional laminar Navier-Stokes solution for the

75 ° delta wing at c_ = 8 °. Figure 13(a) presents

the total pressure ratio contour data of the solution

at x/c = 0.2, 0.5, and 1.0, whereas figure 13(b)

presents the particle trace data at the first grid

point above the surface. Figure 13(c) presents the

surface pressure data at x/c = 0.2, 0.5, and 1.0.

The y and z coordinates at each station have been
nondimensionalized by the local semispan (YLE).



The data for x/c = 1.0 (the trailing edge) of

figure 13(a) illustrate a flow that separates at the

leading edge to form a primary vortex, with a sec-

ondary vortex occurring beneath the primary vor-
tex. Another vortex is seen to occur inboard of this

secondary vortex and is referred to here as a sec-

ond secondary vortex, as it has the same sense of

vorticity as the first secondary vortex. A tertiary
vortex as defined in the literature would have a ro-

tation opposite to that of the secondary vortex. The

particle trace data illustrate not only these two sec-

ondary separations but also a tertiary vortex sepa-

rating beneath each of the secondary vortices. The

tertiary vortices are not evident in the contour data

of figure 13(a) but are evident in velocity vectors not

presented here. The data of figures 13(a) and (b)

illustrate that the secondary and tertiary vortices

strengthen as the trailing edge is approached (cor-

responding to a increase in local Reynolds number),

such that the number of separations increase. How-

ever, the primary vortex is seen to grow essentially
conically from the apex to the trailing edge.

The surface pressure data of figure 13(c) show
that surface pressure distribution on the lower sur-

face is markedly different for each of the three
x-stations presented; this corresponds to the differ-

ent geometry at these x-stations. However, the up-

per surface distributions do not vary greatly between

the x-stations. The sharp decrease in pressure evi-

dent on the upper surface occurs over an interval of

Y/YLE = 0.4-0.5. Note in the particle trace data of

figure 13(b) that this pressure decrease falls between

the primary reattachment line (Y/YLE = 0.35) and

the first secondary separation line (Y/YLE = 0.55).

Thus, the sharp decrease in pressure is due to the

edge of the vortex. These data illustrate that the

primary vortex moves slightly outboard as the trail-

ing edge is approached. The surface pressure data
also reflect the increase in the number and strength

of secondary and tertiary vortices as the trailing edge

is approached.

For the above solution, as the trailing edge is

approached the local Reynolds number (based on

chord length) increases. Presented in figure 14" are

conical laminar Navier-Stokes solutions at Reynolds
numbers of 0.5 × 106 , 1.0 x 106 , and 3.73 x 106 ,

which roughly correspond in magnitude to the lo-

cal Reynolds numbers at x/c = 0.2, 0.5, and 1.0
for the three-dimensional laminar Navier-Stokes so-

lution. The contour and particle trace data of fig-

ures 14(a) and (b) show an increase in the extent

of secondary and tertiary separation with an in-

crease in Reynolds number, as observed in the three-

dimensional data. The data of figures 14(a) and (b)

also show that the general size of the primary vortex

is essentially unchanged with an increase of Reynolds
number. The surface pressure data of figure 14(c) il-

lustrate that the primary vortex moves slightly out-

board with an increase in Reynolds number.

Presented in figure 15 are the data from the
three-dimensional turbulent Navier-Stokes solution

for the 75 ° delta wing at a = 8° . The data for

x/c = 1.0 (the trailing edge) of figure 15(a) illustrate
a flow that separates at the leading edge to form a

primary vortex, with one secondary vortex occurring

beneath the primary vortex. The contour definition

of the secondary vortex becomes more distinct as

the trailing edge is approached, suggesting that the

secondary vortex gains strength as the trailing edge

is approached. The contour data and the particle

trace data of figures 15(a) and (b) illustrate the near

conical growth of the primary vortex down the length

of the wing. The surface pressure data of figure 15(c)

demonstrate that the edge of the primary vortex

does move slightly outboard as the trailing edge is

approached.

Presented in figure 16 are the data from con-
ical turbulent Navier-Stokes solutions obtained at

Re)molds numbers of 0.5 x 106, 1.0 x 106, and 3.73 x
10 ° for the 75 ° delta wing at a = 8°. Again, these

Reynolds numbers roughly correspond in magnitude

to the local Reynolds numbers at x/c = 0.2, 0.5, and

1.0 of the corresponding three-dimensional solution.

The trends of the vortical structures with increasing

local Reynolds number observed in the correspond-

ing three-dimensional solution are also observed in

these solutions, as seen in figure 16.
Presented in appendix B are the computational

data from the three-dimensional Navier-Stokes so-

lutions and corresponding conical solutions for the
67.5 ° and 60 ° delta wings at a = 8 ° . These data

reflect the same effects from modeling the three-

dimensional wing as were observed on the 75 ° delta

wing. The flow structures predicted by the three-
dimensional solutions are essentially conical. The

minimal effects that do exist appear to be correlated

with local Reynolds number on the basis of compar-

isons with conical solutions at varying Reynolds num-

bers. Therefore, conical solutions were used in the

parametric comparisons with the experiment below.

Conical Navier-Stokes Results and

Comparisons With Experiment

The comparison of laminar and turbulent Navier-
Stokes solutions with experimental data is presented

here. All Navier-Stokes solutions presented in this

section are conical. Portions of the computational

data are presented in the form of total pressure ratio

(Po,l/Po) contours, which best define vortical struc-
tures as they appear in vapor-screen photographs.

7



Likewise,cross-flowMachnumbercontoursarepre-
sented,asthesecontoursbestdefinecross-flowshock
systemsastheyappearin vapor-screenphotographs.
Yet anotherform of computationaldatapresenta-
tion fortheNavier-Stokessolutionsis thatofparticle
tracesat thefirst gridpoint abovethesurface.This
form of data is regardedasa numericalequivalent
to theoil-flowphotographsobtainedexperimentally.
Surfacepressuredataarealsopresented.

75° delta wing. Presented in figure 17 are the

vapor-screen photographs for the 75 ° delta wing at

a = 4°, 8 °, 12°, 16 °, and 20 °. This wing has a sub-

sonic leading-edge condition at M = 2.8. By exam-

ination of these photographs, the flow over the 75 °

delta wing at M = 2.8 is seen to be separated at the

leading edge throughout the angle-of-attack range.

The discussion in reference 15 points out a transition

with angle of attack from a leading-edge bubble at

a = 4 ° to a classical vortex (primary vortex with

secondary vortex) at a --- 8 ° to a vortex with shock
at a = 16 °. The corresponding computational data
from the laminar and turbulent Navier-Stokes solu-

tions are also presented in the form of color contour

plots. Figure 17(a) presents the total pressure ratio

contour plots, and figure 17(b) presents the cross-flow
Mach number contour plots. Figure 17(c) defines the
color bar scales for the color contour data of the 75 °

delta wing. Note that each angle of attack has a dif-
ferent color bar scale for the cross-flow Mach number

data.

The data of figure 17 demonstrate that the wall

boundary-layer model (laminar or turbulent) does

not significantly influence the primary vortex flow
field. At the low angles of attack (a = 4 ° and

8°), the boundary-layer model affects the extent of

secondary separation occurring beneath the primary
vortex. However, at the higher angles of attack, the

boundary-layer model has a minimal effect on the

secondary separation. This trend is also observed in

the surface pressure data of figure 18, which presents

the experimental and computational surface pressure
distributions for each of the 15 cases. The data

for the 75 ° delta wing demonstrate that as angle
of attack increases, the differences in the surface

pressure distribution due to boundary-layer model

lessen in the region of secondary separation.

Cross-flow shock systems not identified in
reference 15 are evident in the cross-flow Mach num-

ber data of figure 17(b). For example, the Navier-

Stokes solutions predict weak cross-flow shock sys-

tems atop the primary vortex at a -- 4 ° and 8°. The

changing gray levels atop the primary vortex in the

vapor-screen photograph correspond very well to the

computed cross-flow shock structure. The cross-flow
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shocks at a = 4 ° and 8° are sufficiently weak that

they are not evident in the total pressure ratio con-

tour data of figure 17(a). The data of figure 17(b)

also show a cross-flow shock forming between the pri-

mary vortex and its counterpart across the longitu-

dinal plane of symmetry at a = 16 ° and 20 °. This

flow structure, although not identified in reference 15,

is clearly evident in the corresponding vapor-screen

photograph and has been observed experimentally by

Szodruch (ref. 32).

As defined in reference 15, a separation bubble
is a structure that contains its entire rotational flow

within its boundaries and exhibits no secondary sep-

aration. At a = 4 °, the computational data that

lie within the separation bubble region, agree with

this definition in that the solution predicts a nar-
row vortex whose core lies close to the surface of

the wing such that the reattachment line corresponds
to the inboard termination of the vortex. However,

the Navier-Stokes solution also predicts the forma-

tion of secondary and tertiary separations occurring

beneath the primary vortex. As stated above, the ex-

tent of this secondary separation is dependent on the

boundary-layer model, as is evident in the A = 75 °,

a = 4°, M = 2.8 data of figures 17 18.

Figure 19 is a more extensive presentation of

the computational and experimental data for the

A = 75 °, a = 8°, M = 2.8 case. Line contour plots

of total pressure ratio for both the laminar and the

turbulent Navier-Stokes solutions are presented un-

derneath the vapor-screen photograph. Particle trace
data are presented for both the laminar and the tur-
bulent Navier-Stokes solutions beneath the oil-flow

photograph. The experimental and computational

surface pressure distributions are presented on the

right of the figure.

As stated above, the total pressure ratio contour

plots of figure 19 illustrate that the boundary-layer
model influences the extent of separation occurring

beneath the primary vortex for this case. The con-

tour data of figure 19 illustrate that the laminar

Navier-Stokes solution predicts the formation of two

secondary vortices beneath the primary vortex. The

separation lines for each of these vortices are also evi-

dent in the particle trace data for the laminar Navier-

Stokes solution. The particle trace data also show

evidence of a tertiary vortex beneath each of the sec-

ondary vortices. These tertiary vortices are not ev-

ident in the contour data of figure 19. This system

of secondary and tertiary vortices is seen in a close-

up view of the most inboard secondary vortex from
the laminar Navier-Stokes solution, as illustrated in

the data of figure 20. In contrast, as seen in fig-

ure 19, the turbulent Navier-Stokes solution has less

separation with just one secondary vortex occurring



becausetheturbulentflowbeneaththeprimaryvor-
tex is moreresistantto separation.Thustheturbu-
lent Navier-Stokessolutionappearsto agreebetter
with thevapor-screenphotograph.Thesurfacepres-
suredataalsoshowthat theturbulentNavier-Stokes
solutionisin betteragreementwithexperimentthan
thelaminarNavier-Stokessolution.

Theexplanationfor thisobservationcanbeseen
from anexaminationof the oil-flowphotographin
figure19. Theoil-flowpatternundergoesa change
at the midpointof the wing. The oil-flowpattern
aheadofthispointagreeswellwith theparticletrace
dataof the laminarNavier-Stokessolution,whereas
theoil-flowpatternaft of thispointagreeswellwith
theparticletracedataoftheturbulentNavier-Stokes
solution.Thusit is conjecturedthat a transitionin
boundary-layerstateoccurredforthiscaseatroughly
aReynoldsnumberof2x 106.Sincethevapor-screen
photographandsurfacepressuredatawereobtained
nearthe trailing edgewherea turbulentboundary
layerapparentlyexists,the turbulentNavier-Stokes
solutionwouldbeexpectedto agreebetterwith the
experimentaldata.

Containedin figure21 is anextensivepresenta-
tionof datafor A -- 75°, c_-- 16°, andM -- 2.8. The

similarity in contour plots and surface pressure distri-
butions for the laminar and turbulent Navier-Stokes

solutions indicates that boundary-layer model has lit-

tle influence on the extent of separation beneath the

primary vortex for the high angles of attack. The

contour data of figure 21 show the flow structure to

be a cross-flow shock atop a primary vortex, with a

secondary vortex occurring beneath the primary vor-

tex. The particle trace data illustrate the secondary

separation as well as a tertiary separation occurring

beneath the secondary vortex. The tertiary vortex is
not evident in the contour data of figure 21. However,

the tertiary vortex is evident upon closer scrutiny of
the contour data and velocity vectors (not presented

here). The separation lines for both the secondary
and the tertiary vortices are evident in the particle

trace data, which agree well with the oil-flow photo-

graph. However, the tertiary vortex is not evident

in the vapor-screen photograph. Also not evident

in the vapor-screen photograph is the formation of a

shock between the primary and secondary vortices as
seen most noticeably in the line contour plots of fig-

ure 21. The present vapor-screen flow-visualization

technique is apparently not sensitive enough to de-
tect either of these two detailed flow structures.

The surface pressure data agree well with experi-

ment, although the computational minimum pres-

sure coefficient is slightly lower than that observed

experimentally.

67.5 ° delta wing. Presented in figure 17 are the

vapor-screen photographs for the 67.5 ° delta wing
at (_ -- 4 °, 8 ° , 12 ° , 16 °, and 20 ° . Note that the

67.5 ° delta wing at M = 2.8 has a supersonic leading-

edge condition. The flow classifications as given in
reference 15 would indicate a leading-edge separa-
tion bubble with shock at (_ > 8 ° . At _ = 4 ° the

m

flow is attached with a cross-flow shock occurring in-

board of the leading edge. Figure 22 also contains
color contour data from the laminar and turbulent

Navier-Stokes solutions for the 67.5 ° delta wing. The

computational data of figure 22 demonstrate that for

c_ _< 12° boundary-layer model has an influence on

the primary flow structure. The laminar Navier-

Stokes solutions predict a separation bubble. The
turbulent Navier-Stokes solutions predict attached

flow at the leading edge with a cross-flow shock occur-

ring inboard; a shock-induced separation bubble re-
sults at _ -- 8 ° and 12 °. The different flow structures

due to boundary-layer model yield different pressure

distributions, as illustrated in the 67.5 ° delta wing

data of figure 18.

The surface pressure data for the A = 67.5 °,

= 4 °, M = 2.8 case illustrate that the turbulent
Navier-Stokes solution is in better agreement with

the experimental data. The contour data of figure 22
also demonstrate that the turbulent Navier-Stokes

solution is in better agreement with the vapor-screen

photograph. The vapor-screen photograph for this

angle of attack shows what appear to be a series of
streamwise vortices that have been associated with

boundary-layer transition on bodies at low angles of
attack as noted by Peake and Tobak (ref. 33). Thus,

it is proposed that the boundary layer is turbulent

at the trailing edge for this case. A correspond-

ing transitional Reynolds number would be about
2.4 × 106.

In contrast to the c_ -- 4 ° case, the data for a = 8°
and 12 ° demonstrate that the laminar Navier-Stokes

solution is in better agreement with the vapor-screen

photograph, as seen in figure 22. A more extensive
presentation of the data for the A -- 67.5 °, _ = 8°,

M -- 2.8 case is contained in figure 23. The cross-flow
Mach number contour data from the laminar Navier-

Stokes solution demonstrate a thin primary vortex

whose core lies close to the surface of the wing (i.e.,

a leading-edge separation bubble) with a cross-flow

shock atop the primary vortex. The corresponding

particle trace data illustrate not only these features

but also a secondary separation occurring beneath

the primary vortex. This secondary flow structure
is a weak structure not evident in either the contour

data as presented here or the vapor-screen photo-

graph and is only evident in the computational data



upon closeexaminationof the cross-flowvelocity
vectors(notpresentedhere).

In contrast,theturbulentNavier-Stokessolution
dataoffigure23demonstrateanattachedflowatthe
leadingedgewithshock-inducedseparationoccurring
inboard. Theparticletracedata for the turbulent
Navier-Stokessolutionalsodemonstrateasmallsep-
arationbubbleoccurringjust inboardof the leading
edge,whichis notevidentin thecontourdata.This
typeof flowstructurewasobservedbySeshadriand
Narayan(ref.34)for shock-inducedseparatedflows.

ThecontourdataofthelaminarNavier-Stokesso-
lutionagreebetterwith thevapor-screenphotograph
thando the contourdataof the turbulentNavier-
Stokessolution. Becausethe oil-flowpattern from
theoil-flowphotographis indiscernible,acomparison
with theparticletracedataisdifficult.However,nei-
therof the computedsurfacepressuredistributions
agreewellwith theexperimentaldatapoints.Theex-
perimentalsurfacepressuredataexhibita constant
pressureoutboardoftwo-thirdsofthesemispanand,
in this respect,the laminarNavier-Stokessolutionis
inbetteragreementwith theexperimentaldata.

The A -- 67.5°, c_ = 8 ° , M = 2.8 case has a

lower leading-edge sweep than that of the A = 75 °,

= 8 °, M = 2.8 case, where a boundary-layer

transition is conjectured to occur at an approxi-

mate Reynolds number of 2.0 × 106. The trailing-

edge Reynolds number for the 67.5 ° delta wing was
2.4 x 106. Both sets of data are of separated flow

types. Other researchers (ref. 35) have noted that a

decrease in leading-edge sweep increases the transi-

tional Reynolds number. Therefore, it is conjectured
that a complete transition from a laminar boundary

layer to a turbulent boundary layer never occurred on

the 67.5 ° wing at (_ = 8°; this would account for the

discrepancy between the computed and experimental
data.

From the data of figure 22, it can be seen that

boundary-layer model does not influence the forma-
tion of primary flow features and has a minimal in-

fluence on the secondary flow features at high angles

of attack (c_ _ 16°). A more extensive presenta-

tion for the A = 67.5 °, a = 16 °, M -- 2.8 case is

contained in figure 24. The contour data for both
solutions indicate that the flow structure is that of

a narrow primary vortex separating at the leading

edge with the core of the vortex lying close to the

wing. A cross-flow shock is seen to occur atop the

primary vortex, apparently inducing a small vorti-
cal structure inboard of the primary vortex. This

structure is also evident at _ = 12 ° as shown in fig-
ure 22. The flow structures discussed above are ev-

ident in the particle trace data. The particle trace
data also indicate secondary separation occurring be-
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neath the primary vortex. The secondary vortex for
the laminar Navier-Stokes solution is seen to reattach

very close to the leading edge, whereas the turbulent
Navier-Stokes solution predicts a smaller secondary

vortex as expected. The shock-induced vortical flow

and secondary vortical flow are not evident in the

vapor-screen photograph. Because the oil-flow pat-

terns from the photograph are indiscernible, a com-

parison with the particle trace data is difficult.

The surface pressure data of figure 24 show that

both solutions agree well with the experimental dis-

tribution. However, the computational pressure coef-

ficients are slightly lower than the experimental data.
In contrast to the trends observed for the 75 °

delta wing, the 67.5 ° delta wing data show an in-
fluence of boundary-layer model on the prediction of

the primary flow structure at low angles of attack

(_ < 12°). The turbulent-boundary-layer model al-
lows the flow to remain attached at the leading edge.

However, the laminar solution cannot negotiate the

expansion of the flow at the leading edge without a

separation occurring at the leading edge. The result
is a thin separation bubble.

In examining the laminar Navier-Stokes solutions

of figure 22, it is also observed that the size of the sep-

aration bubble is related to the effect boundary-layer

model has on the prediction of primary flow struc-
ture. Recall from the discussion on the 75 ° delta

wing that a separation bubble as encountered here is

a primary vortex whose core lies close to the surface.
At c_ > 16° the vortex core of the separation bubble

is apparently large enough that it shields the shock

atop the vortex from any interaction with the bound-

ary layer. Thus, there is only a vortex/boundary

layer interaction occurring that appears to be insen-

sitive to boundary-layer model. The high-angle-of-

attack cases for the 75 ° delta wing, which also con-

sisted of large primary vortices, were also insensitive

to boundary-layer model. However, at _ < 12 ° on

the 67.5 ° delta wing the vortex is extremely thin,
and the shock atop the vortex is apparently no longer

shielded from the boundary layer. It is speculated
that an interaction of the shock with the bound-

ary layer and vortex results. This type of interac-

tion appears to be sensitive to boundary-layer model.

In addition to the other known deficiencies, the

turbulent-boundary-layer model may be incapable of

modeling this type of interaction because of nonequi-
librium effects.

60 ° delta wing. Presented in figure 25 are

the vapor-screen photographs for the 60 ° delta wing
at _ = 4° , 8 °, 12 ° , 16 ° , and 20 ° . Note that

the 60 ° delta wing at M -- 2.8 has a supersonic

leading-edge condition. The flow classifications as



givenin reference15wouldindicatethat the flow
undergoesatransitionastheangleofattackincreases
fromanattachedflowwith shockto ashock-induced
separatedflow to a separationbubblewith shock.
Figure25alsocontainscolorcontourdatafromthe
laminarandturbulentNavier-Stokessolutionsofthe
60° deltawing.Thecomputationaldataoffigure25
illustratethatfora _< 12 ° boundary-layer model does

not influence the overall prediction of attached flow

at the leading edge with a cross-flow shock occurring

inboard. However, in the region of the cross-flow

shock, boundary-layer model influences the cross-

flow separation for _ = 8° and 12 °. The separation

that occurs at a -- 4 ° is very weak, which is evident

in the similarity of the contour plots of figure 25 and

the surface pressure distributions for the laminar and
turbulent Navier-Stokes solutions as seen in the 60 °

delta wing data of figure 18.

In contrast, the surface pressure distributions for
the laminar and turbulent Navier-Stokes solutions for

a = 8° and 12 ° are significantly different in the re-

gion of cross-flow separation. A more extensive data
presentation for the A = 60 °, a = 8°, M = 2.8 case is

contained in figure 26. The cross-flow Mach number
contour data for the laminar Navier-Stokes solution

indicate a smooth separation from the surface of the

wing to form a very thin primary vortex whose core

lies close to the surface of the wing. The vortex arises

from separation that occurs outboard of the cross-
flow shock. In contrast, the turbulent Navier-Stokes

solution does not predict a smooth separation, as

the turbulent-boundary-layer flow is more resistant

to separation. The turbulent Navier-Stokes solution
instead predicts a separation occurring directly un-

der or inboard of the cross-flow shock. The shape of

the cross-flow shock as it impinges on the surface of

the wing is different for the two types of cross-flow

separation. The laminar Navier-Stokes solution pre-
dicts that the shock will bend toward the centerline

to come to rest on the top edge of the primary vor-

tex, as is more readily evident in the cross-flow Mach

number data of figure 25(b). However, the turbulent
Navier-Stokes solution predicts that the shock will

sweep back toward the leading edge to impinge on

the surface near the point of separation.

These different types of cross-flow separation also

produce different pressure distributions in the region

of cross-flow separation, with the laminar distribu-

tion in slightly better agreement with the experimen-

tal data points. A comparison of the contour data

of figure 26 and the vapor-screen photograph is not

so decisive because of the very small nature of the

cross-flow separation. As observed in the 75 ° delta

wing data, the vapor-screen technique appears to be
insensitive to detecting small-scale detailed flow fea-

tures. However, the cross-flow shock in the vapor-

screen photograph does appear to bend back toward

the centerline and thus is in better agreement with
the laminar Navier-Stokes solution.

The different types of cross-flow separation illus-

trated in the contour data of figure 26 are also evident

in the particle trace data. A secondary separation

underneath the thin primary vortex is also evident in

the particle trace data of the laminar Navier-Stokes

solution. The data also demonstrate a small separa-

tion occurring inboard of the leading edge, as was ev-
ident for the turbulent Navier-Stokes solution of the

A = 67.5 °, a = 8°, M = 2.8 case (fig. 23). Although

the quality of the oil flow makes the comparison dif-
ficult, the laminar Navier-Stokes solution appears to

be in better agreement.
In contrast to the trends observed for the 75 ° and

67.5 ° delta wings, the data of figure 25 indicate that

boundary-layer model does influence the formation

of the primary flow structure for the 60 ° delta wing

at the high angles of attack (a >_ 16°). A more

extensive presentation for the A -- 60 °, a = 16 °,
M = 2.8 case is in figure 27. A detailed inspection

of the contour data of figure 27 demonstrates that

the laminar Navier-Stokes solution predicts the for-

mation of a leading-edge separation bubble (i.e., a

thin primary vortex whose core lies close to the sur-

face of the wing). A cross-flow shock occurs atop the

inboard edge of the separation bubble. The laminar

Navier-Stokes solution agrees well with the vapor-

screen photograph and the oil-flow pattern over the

forward portion of the wing. The particle trace data
from the laminar Navier-Stokes solution also reflect

the formation of a small weak secondary separation

(beneath the primary vortex) which is not evident in
the contour data or the vapor-screen photograph. In

contrast, the turbulent Navier-Stokes solution pre-

dicts attached flow at the leading edge with shock-

induced separation occurring inboard. The particle
trace data of the turbulent Navier-Stokes solution

also show the formation of a small weak secondary

separation. The contour and particle trace data of
the turbulent data do not correspond well to the

vapor-screen and oil-flow photographs.

The different flow structures corresponding to a

change in boundary-layer model for a -- 16 ° yield

different surface pressure distributions, as seen in fig-
ure 27. Neither distribution agrees completely with

the experimental data points. However, the laminar
Navier-Stokes solution is in better agreement with

the experimental data in that it predicts that the

pressure distribution is nearly constant approaching

the leading edge.

As seen in figure 18, the data for each of

the three wings exhibit an increment between the
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laminarNavier-Stokessolutionandexperimentalsur-
facepressuredistributionsat the highanglesof at-
tack(c_> 16°).This incrementisseento increaseas
angleofattackis increased.In fact,the incrementis
seento increasewith decreasingleading-edgesweep.
Althoughgridrefinementwasnotperformed,thegrid
isprobablyfineenoughthat thenotedincrementbe-
tweenthe experimentalandcomputationaldata is
not a functionof grid size,especiallysincetheflow
structuresassociatedwith thelowersweepwingsare
closerto thesurfaceofthegeometrywherethegridis
highlyclustered.Thenotedtrendsin this increment
betweentheexperimentalandcomputationalsurface
pressuredistributionsarealsoobservedin theEuler
computationsof figure28. Thecomputationaland
experimentalleewardpressuresonthecenterlineare
in goodagreementandanerrorin angleof attackis
thereforeunlikely.Thisdiscrepancyisunresolvedat
thepresenttime.

Theobservationthat boundary-layermodelinflu-
encestheformationoftheprimaryflowstructurefor
the60° deltawingat highanglesofattack((_> 16°)
alsoappliesat lowanglesofattack(_ < 12°) on the
67.5° deltawing. Thesizeandthe locationof the
leading-edgevortexfor thesetwosetsof dataareof
thesameorderof magnitudeandcouldbeexpected
tohavethesamesensitivityto boundary-layermodel.

As notedin figure27,the laminarNavier-Stokes
solutionagreesbetter with the experimentaldata
for the 60° wing at c_= 16°. The trailing-edge
Reynoldsnumberfor the 60° deltawingwas1.7x
10". This wing hasa lower leading-edgesweep
than that of the A = 75 °, a -- 8 ° , M = 2.8

case, a separated flow case, where a boundary-layer

transition is conjectured to occur at an approximate

Reynolds number of 2.0 × 106. As other researchers

(ref. 35) have noted that a decrease in leading-edge
sweep increases the transitional Reynolds number, it

is possible that a transition from a laminar boundary

layer to a turbulent boundary layer never occurred

on the 60 ° delta wing with leading-edge separated

flow (a >_ 16°). Therefore, it is speculated that the
transition strip is ineffective in promoting boundary

transition for the separated flow cases examined in

this investigation. The boundary-layer transition
observed to occur for the A -- 75 °, c_ = 8°, M = 2.8

case is a natural boundary-layer transition since the

flow separates at the leading edge and reattaches

inboard of the transition strip.

However, for the attached flow, the flow does
encounter the transition strip, which was applied on

the models in an attempt to force a transition from
a laminar boundary layer to a turbulent boundary

layer. Recall that the A -- 67.5 °, c_ = 4°, M = 2.8

case, an attached flow case, had a better agreement
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between the turbulent Navier-Stokes solution and

the experimental data. The transitional Reynolds

number for the 60 ° delta wing at (_ -- 4 ° could be

expected to be greater than that of the 67.5 ° delta

wing at (_ = 4°. Also, the transitional Reynolds

number for the 60 ° delta wing could be expected

to increase as angle of attack increases, since it

has been observed by Stallings and Lamb (ref. 36)

that increasing angle of attack results in an increase
in transitional Reynolds number for attached flow.

Since the 60 ° delta wing had a lower trailing-edge

Reynolds number than the 67.5 ° delta wing, it is

possible that a complete transition from laminar to

turbulent flow did not exist. Thus, it is speculated

that the transition strip is ineffective in forcing a

complete transition in boundary-layer state for those

attached flow cases examined in this investigation.

Conical Euler Results and Comparisons

With Experiment

In order to determine the ability of the Euler code

to predict the six flow regions of interest, a compar-
ison of the conical Euler solutions with the Navier-

Stokes solutions and with the experimental data is

presented here. All solutions presented in this section
are conical solutions. The laminar Navier-Stokes so-

lutions from the Navier-Stokes code were selected for

comparison here since these solutions had, in general,

a better agreement with the experimental data over

the computational test matrix. The computational

data are presented in the same fashion as in the pre-
vious section. The particle trace data from the Euler

solutions are not presented since the particle traces

represent the particle trajectories in the inviscid por-

tion of the flow and do not have any relation to the

oil flows measured experimentally.

75 ° delta wing. Presented in figure 29 are

the vapor-screen photographs and color contour data
from the laminar Navier-Stokes and Euler solutions

for the 75 ° delta wing over the angle-of-attack range.

The Euler solutions predict the same type of primary
flow structure as the laminar Navier-Stokes solutions

(i.e., flow separates at the leading edge to form a

primary vortex). Also, the Euler solutions predict

a cross-flow shock system above the primary vortex

over the angle-of-attack range. The shock system is
similar to, but somewhat stronger than, that of the
laminar Navier-Stokes solutions.

The surface pressure data for the 75 ° delta wing

of figure 28 illustrate that the Euler solutions over-

predicted the expansion due to the primary vortex

at all angles of attack. The data for the 75 ° delta

wing at a < 8 ° show that the expansion in the

Euler surface pressure due to the primary vortex



occursoutboardof the correspondingexpansionfor
the laminarNavier-Stokessolutions.This observa-
tioncorrespondsto theEulerpredictionof a smaller
primaryvortexin thespanwisedirectionandis con-
sistentwith thetrendsin Reynoldsnumberpredicted
with thelaminarNavier-Stokessolution.However,at
thehigheranglesof attacktheexpansiondueto the
primaryvortexoccursat the samelocationin the
EulerandlaminarNavier-Stokessolutions.Thisob-
servationthat thesizeoftheprimaryvortexissimilar
for thetwocomputationalcodesat a :> 12 ° is also

evident in the contour data of figure 29. The con-

tour data of figure 29 also indicate that the Euler

solutions predict a larger total pressure loss for the
primary vortex.

In contrast to its ability to predict the primary

vortex, the contour data of figure 29 demonstrate

that the Euler code is incapable of predicting the
formation of any secondary separation beneath the

primary vortex. In fact, for a >_ 12 ° , the EuIer

solutions predict that a cross-flow shock will form

underneath the core of the primary vortex and extend

to the surface of the wing. This cross-flow shock is

evident in the surface pressure distributions for these

cases in the 75 ° delta wing data of figure 28. The

laminar Navier-Stokes solutions also predicted the
formation of a cross-flow shock that extends from

beneath the primary vortex core to the feeding sheet
of the secondary vortex.

67.5 ° delta wing. Presented in figure 30 are
the vapor-screen photographs and color contour data
from the conical laminar Navier-Stokes and Euler

solutions for the 67.5 ° delta wing over the angle-of-
attack range. In examining the Euler solution for

a = 4°, the turbulent Navier-Stokes solution should

be used since it was shown to be in better agreement
with the experimental data than the laminar Navier-

Stokes solution. Figure 31 presents the cross-flow

Mach number contour data and the surface pressure
distributions for the Euler and turbulent Navier-

Stokes solutions for the 67.5 ° delta wing at a = 4 °.

Both codes predict attached flow at the leading edge,
with a cross-flow shock occurring inboard. The

location of the cross-flow shock as judged from the
cross-flow Mach number contour data is the same

for both solutions. However, the Euler solutions

predict a stronger cross-flow shock, as is evident in
the surface pressure data.

As evident in figure 30, the Euler solution for

a -- 8 ° case predicts attached flow at the leading

edge, with a cross-flow shock occurring inboard. In

contrast, the laminar Navier-Stokes solution predicts
a separation bubble with shock flow type. The

laminar Navier-Stokes solution is in better agreement

with the vapor-screen photograph and the surface
pressure data.

At the higher angles of attack, a > 12 °, the data

of figure 30 show that the Euler solutions predict

the same type of primary flow structure as that pre-

dicted by the laminar Navier-Stokes solutions (i.e.,

separation bubble with shock). However, the Eu-

ler solutions do not predict any secondary separation

underneath the narrow primary vortex as is evident

in the laminar Navier-Stokes solutions (see fig. 24).
The size of the primary vortex appears to be similar

for the two solutions, as is also evident in the surface

pressure data of figure 28. However, the Euler code

overestimates the expansion in surface pressure due

to the primary vortex, as was found in the data for

the 75 ° delta wing. The overestimation of the expan-

sion in surface pressure due to the primary vortex is

found to decrease with increasing angle of attack for
both sets of data.

The data of figure 30 for a > 12 ° illustrate that

the Euler solutions predict a slightly stronger cross-

flow shock atop the primary vortex than the laminar
Navier-Stokes solutions. The laminar Navier-Stokes

solutions for a = 12 ° and 16 ° predicted the forma-

tion of a vortical structure inboard of the primary

vortex. The Euler solutions predicted a weak vorti-
cal structure for a = 16 ° but none for a = 12°.

60 ° delta wing. Shown in figure 32 are the

vapor-screen photographs and color contour data
from the conical laminar Navier-Stokes and Euler

solutions for the 60 ° delta wing over the angle-of-

attack range. For a < 12 ° , the contour data of

figure 32 show that the Euler solutions predict an

attached flow condition as is predicted by the lam-

inar Navier-Stokes solutions. However, the laminar
Navier-Stokes solutions also predict a smooth sepa-

ration from the surface of the wing to form a thin

primary vortex with a cross-flow shock occurring

atop the primary vortex. The Euler solutions pre-

dict a cross-flow shock occurring inboard of the lead-

ing edge and, as expected, no shock-induced separa-

tion. The 60 ° delta wing data of figure 32 show that

the Euler and laminar Navier-Stokes surface pressure

distributions agree well except in the region of the
cross-flow shock. The laminar Navier-Stokes solu-

tions are in better agreement with the vapor-screen

photographs and the experimental surface pressure
data.

For the higher angles of attack, a _> 16 °, the data

of figure 32 show that the laminar Navier-Stokes so-

lutions agree well with the vapor-screen photographs

in predicting a separation bubble with shock. The

Euler solutions predict the occurrance at the lead-

ing edge of a small separated flow, which is barely

13



discerniblein thetotal pressureratiocontourdataof
figure32(a).Thisseparationisclearlyevidentin the
cross-flowvelocityvectorsfortheEulersolutions(not
presentedhere).TheEulersolutionthenpredictsat-
tachedflowfromthereattachmentof thisverysmall
separationto a cross-flowshockoccurringinboard.
Fora = 20 ° the Euler solution also predicts a shock-

induced vortex occurring inboard of the cross-flow

shock. The difference in the flow structures between

the laminar Navier-Stokes and Euler solutions is ev-

ident in the surface pressure data for the 60 ° delta

wing (fig. 28).

Summary of Computational Results

This section provides a summary of the ability of
the Navier-Stokes code and the Euler code to predict

the flow patterns observed experimentally over the

lee side of delta wings at supersonic speeds. Based

on these results, a discussion of the appropriateness

of when to use either code is given.

Summary of Navier-Stokes results. The re-

sults of the comparisons in a previous section between
the conical laminar and turbulent Navier-Stokes so-

lutions and the experimental data are summarized

in figure 33 and are discussed below. Figure 33(a)

presents the summary of the effect of boundary-layer
model on the prediction of primary and secondary

flow structures. The definition of primary flow struc-

ture corresponds to the flow at the leading edge being

either separated or attached. Figure 33(b) presents

the summary of the comparison with experimental
data.

Figure 33(a) illustrates that boundary-layer
model had an influence on the type of primary

flow structure predicted only when a thin leading-

edge separation bubble was experimentally observed.

These points are represented by the solid symbols in

figure 33(a). The turbulent flow remained attached
as the flow turned around the leading edge. The lam-

inar flow could not negotiate the turn at the leading

edge and thus separated. It is speculated that the ex-

tremely thin separation bubble caused an interaction
to occur between the shock, the separation bubble,

and the boundary layer. This interaction is appar-

ently sensitive to boundary-layer model.

The open and partially shaded symbols in fig-

ure 33(a) are those cases where the boundary-layer
model had no influence on the type of primary flow

structure predicted. Note that these cases are not in

a region where the flow is transitioning from sepa-
rated to attached flow at the leading edge. At high

angles of attack, the boundary-layer model had a
minimal influence on the prediction of secondary sep-

aration (open symbols). At low to moderate angles of
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attack, boundary-layer model did have an influence

on secondary separation (partially shaded symbols).

For the separated flow cases, boundary-layer model

influenced the extent of secondary separation. For

the attached flow cases, boundary-layer model influ-

enced the type of cross-flow separation.

The flow chart of figure 33(b) illustrates that with

increasing M N the laminar Navier-Stokes solutions

agreed better with the experimental data. This ob-

servation is speculated to be a reflection of decreas-

ing trailing-edge Reynolds number with decreasing

leading-edge sweep. For example, a natural transi-
tion in boundary-layer state (i.e., from laminar flow

to turbulent flow) is conjectured to occur for the

separated flow case A = 75 °, a = 8° , M = 2.8

(ReTE = 3.7 x 106). Whereas, it is conjectured that a
complete transition in boundary-layer state did not
occur for the attached flow case A = 60 °, a = 8°,

M = 2.8 (ReTE = 1.7 x 106).

Summary of Euler results. The results of the

comparisons in a previous section between the Euler
solutions and the experimental data are summarized

in figure 34. For those cases expected to be clearly

separated at the leading edge (through a subsonic
leading-edge condition or a high angle of attack) or

clearly attached at the leading edge (through a super-

sonic leading-edge condition at a low angle of attack),
the Euler code is seen to be capable of predicting the

primary flow structure. Typically, for those cases
where the Navier-Stokes results showed a sensitivity

to boundary-layer model of the primary flow struc-

ture predicted, the Euler code was incapable of pre-

dicting the type of primary flow structure experimen-

tally observed. The Euler code is incapable of pre-
dicting any of the secondary flow structures such as

secondary vortices or separation induced by a shock.

Code applicability. In examining the sum-

maries presented in figures 33-34, several observa-
tions can be made on the suitability of the Navier-

Stokes and Euler codes in supersonic wing design.

The first region of interest is for a wing design at
conditions where the flow will clearly separate at the

leading edge or clearly remain attached at the leading

edge. These regions are the shaded regions evident

in figure 35. In these regions the Euler and Navier-
Stokes codes have an equivalent ability in the predic-

tion of the primary flow structure. However, if the

wing design requires the prediction of secondary flow
structures the Navier-Stokes code must be used. Also

note that at the lower angles of attack the wing de-

sign should take into account the effects of boundary-

layer model on the secondary structures predicted by
the Navier-Stokes code.



The secondregionof interestis wherethe pri-
maryflowstructureiscomputationallydependenton
boundary-layermodel.It is recommendedthat wing
designconductedin this regionnot usethe Euler
code.Theuseof theNavier-Stokescodeshouldac-
countfor thesensitivityto boundary-layermodel.

Refinementof Experimental Data
Classification

The computational study prompted a detailed re-
examination of the data of reference 15. Listed in ta-
ble I are the cases that were reclassified. With these

changes imposed on the flow chart of figure l(a), a
different arrangement of the boundaries of the chart

of a N versus M N is proposed and presented in fig-

ure 36. This type of boundary arrangement has also

been proposed by other researchers (refs. 32 and 34).
This refinement of the classification provides for a

smoother transition between separated and attached

flow at the leading edge. The separation bubble

with shock flow field is proposed as the transitional
flow pattern. A discussion of the transition between

separated and attached flows can be found in refer-
ences 34 and 37 and is summarized here with the aid

of the computational data. Presented in figure 37 are
the cross-flow Mach number contour data for those

cases that most closely correspond to lines AA and

BB in the chart of c_N versus M N at the top of fig-

ure 37. Line AA is at a constant o_N but varies in

MN, whereas line BB is at a constant M N varying in

a N. The computational data presented in figure 37
are from the laminar Navier-Stokes solutions.

Along line AA, the angle the flow has to turn in
order to be tangent to the surface remains constant

since o_N is held constant. At low MN, the energy of

the flow normal to the leading edge is not sufficient to

negotiate the expansion at the leading edge because
of the turning angle. The result is leading-edge sep-

aration with primary and secondary vortices. With

an increase in MN, the flow normal to the leading

edge has a greater energy level. Therefore, the flow

can resist separation at the leading edge longer such

that the separation angle between the surface and
the vortex feeding sheet becomes smaller. The re-

sult is a flatter primary vortex of a lower intensity

than that observed at the low M N cases. Since the

reattachment line of the flow corresponds to the in-

board edge of the primary vortex, this type of flow

is considered to be a separation bubble. However, in
contrast to the definition of separation bubble in ref-

erence 15, secondary separation still occurs beneath

the primary vortex, although the secondary separa-
tion is weaker because of the decrease in vortex in-

tensity with an increase in M N. A decrease in vortex
intensity is evident in the decrease in the size of the

primary vortex with increasing M N. For sufficiently

large MN, the energy level of the flow is large enough

to allow expansion of the flow around the leading

edge without separation occurring. The result is at-
tached flow at the leading edge.

The discussion above is for a transition between

separated and attached flows at constant a N with
increasing M N. The same trends in the transition

of the primary flow structure are evident in the data

corresponding to line BB along which o_N increases

at a constant M N. Along line BB the flow normal

to the leading edge has the same energy level since

M N is held constant. However, as angle of attack

increases the turning angle increases, and thus the

expansion at the leading edge increases. For those

cases along line BB that are at moderate angles of

attack, the energy of the flow is capable of completing
the expansion at the leading edge. The result is

attached flow at the leading edge. For o_N large

enough, the energy of the flow can no longer negotiate

the expansion without separating at the leading edge.

The size of this thin leading-edge separation increases

as angle of attack increases. Although not evident

in the present investigation, the separation could be

expected to increase to a large primary vortex with
further increases in angle of attack.

Conclusions

An Euler flow solver and a thin-layer Navier-

Stokes computational flow solver have been used

to numerically simulate the supersonic lee-side flow

fields over delta wings. These lee-side flow fields have

been experimentally observed over sharp leading-

edge delta wings through parametric variations in

leading-edge sweep, angle of attack, and Mach num-

ber. Throughout the computational study, Mach
number was held constant at 2.8. The flow fields

over three delta wings with 75 ° , 67.5 ° , and 60 °

leading-edge sweeps were computed over an angle-

of-attack range of 4 ° to 20 ° . Conical solutions were

used throughout the computational study. A com-
parison of three-dimensional Navier-Stokes solutions

with the conical Navier-Stokes solutions computa-

tionally illustrates that the flow is essentially coni-

cal for the conditions examined in this investigation,

as has been observed experimentally. The effects of

Reynolds number are confined to small changes in the

secondary flow features; these changes can be mod-
eled through the use of conical solutions at varying

Reynolds numbers. The conical Navier-Stokes solu-

tions with the laminar-boundary-layer model (as op-
posed to the turbulent-boundary-layer model) agreed

better with the experimental data, especially for the

lower sweep delta wings.
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TheEulercodeisadequatein predictingthepri-
maryflowstructure(i.e.,aprimaryvortexoracross-
flowshock)wherethe flow is clearlyseparatedor
attachedat theleadingedgebecauseoftheflowcon-
ditionsnormalto the leadingedge.TheEulercode
is incapableof modelingthesecondaryvorticesand
shock-inducedseparationsobservedexperimentally.
TheNavier-Stokescodeiscapableof predictingboth
primaryandsecondaryflowfeaturesregardlessofthe
flowconditionsnormalto the leadingedge.

Theobservationsmadethroughoutthecomputa-
tional studyprompteda detailedreexaminationof
the Miller and Woodexperimentaldata. This re-
sultedin arefinementof theflowclassificationchart
that classifiesthesix flowregionsof interestasfunc-
tionsof angleof attackandMachnumbernormalto
the leadingedge.This refinementof the flowclas-
sificationsresultsin atransitionalflowbetweensep-
aratedandattachedflowswith theseparationbub-
blewithshockflowastheintermediateflowpattern.
Viewingtheseparationbubblewithshockflowasan
intermediateflowpatternissupportedbytheNavier-
Stokescomputations,whichshowthat a separation
bubble,withorwithoutashock,isanarrowprimary
vortexwhosecoreliescloseto thesurfaceofthewing,
withsecondaryseparationoccurringbeneaththepri-
maryvortex.

Thecomputationalboundary-layermodelwasnot
observedto influencethe predictionability of the

Navier-Stokescodeof the primary flow field with
flowsthat arenotwithinthe intermediateflowregion
betweenthe separatedand attachedflow regions.
At highanglesof attack,the boundary-layermodel
hadaminimalinfluenceonthesecondaryseparation
predictedbytheNavier-Stokescode.However,at low
anglesof attacktherewasa substantialinfluenceof
boundary-layermodelon the secondaryseparation.
For separatedflow, the influenceof boundary-layer
modelwason the extentof secondaryseparation,
whereasfor attachedflow the influencewason the
typeofsecondaryseparation.

Thecomputationalboundary-layermodelwasob-
servedto influencethe ability of the Navier-Stokes
codeto predicttheprimaryflowstructurein the in-
termediateflowregionbetweentheseparatedandat-
tachedflowregions.Theflowpatternin this inter-
mediateflowregionisathin leading-edgeseparation.
Theprimaryexplanationfor thisobservationis that
theboundary-layermodelaffectsthe ability of the
flow to negotiatethe expansionof the flowat the
leadingedge. The observationthat the separation
wasverythin indicatesthat apossibleinteractionof
theshockwith theboundarylayerandthevortexis
occurringandis sensitiveto boundary-layermodel.
In this sameregionthe Euler codeis incapableof
predictingthe type of primaryflowexperimentally
observed.
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Table I. Reclassified Cases

A, deg

67.5
67.5
6O
6O
52.5
52.5

a, deg

4
4

12
12
16
20

M

1.7
2.0
1.7
2.0
1.7
1.7

Previous classification

Primary and secondary vortex
Primary and secondary vortex
Separation bubble
Shock-induced separation
Shock-induced separation
Shock-induced separation

Reclassification

Separation bubble
Separation bubble
Separation bubble with shock
Separation bubble with shock
Separation bubble with shock
Separation bubble with shock
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Figure 1. Classification of experimental data for sharp-leading-edge delta wings (ref. 15).
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Figure 3. Test matrix for the computational study; flee-stream Mach number held constant at 2.8.
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Figure 4. A typical grid used in the Navicr-Stokes solutions.
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Figure 5. Grid spacing for the laminar- and turbulent-boundary-layer Navier-Stokes solutions.
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Figure 6. Three-dimensional Navier-Stokes grid for the 75 ° delta wing.
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(c) Oblique view of grid.

Figure 6. Concluded.
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Figure 7. A typical grid used in the conical Euler solutions.
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Figure 9. Color contour data from the laminar-boundary-layer solution for A = 75 °, _ = 16°, and M = 2.8.

27



Z/YLE

.7

.6

.5

.4

.3

.2

.1

0

".1

°.2

_-cv p

__z CS._" L FS s '_. CV s
/I t I 1 1 _ J I I 1
0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

Y/YLE

(a) Total pressure ratio.

.1

.4

.3

Z/YLE .2

.1

0

=ol

°.2

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1

Y/YLE

(c) Cross-flow velocity vectors.

.7 I .... "

1
I

.3 _, ,,,,'t......-........"--."'"'-,.i"":,'!

-.1 _1__,,,_,_)_ c '_ 41

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1

y/%

(b) Cross-flow Mach number.

Figure 10. Computational data from the laminar-boundary-layer solution for A = 75 °, a = 16°, and M = 2.8.

28



Figure 11. Oil-flow photograph for A = 75°, c_ = 16°, and M = 2.8.
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Figure 12. Particle trace data from the laminar-boundary-layer solution for A = 75°, a = 16°, and M = 2.8.
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Figure 13. Computational data from the three-dimensional laminar Navier-Stokes solution for A = 75 °, c_ = 8°,
and M = 2.8.
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Figure 14. Computational data from the conical laminar Navier-Stokes solutions at various Reynolds numbers
for A = 75 ° , c_ = 8° , and M = 2.8.
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Figure 15. Computational data from the turbulent three-dimensional Navier-Stokes solution for A = 75°,
a = 8 ° , and M = 2.8.
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Figure 23. Comparison of experimental and conical Navier-Stokcs computational data for A = 67.5 °, a = 8 °,
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50



Experimental data

Vapor screen OII flow

Computational data

Cross-flow Mach numblr

Laminar boundary layer

,7 .............

M.

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.01.1

YtYLE

.5

.4

Y E .2

.1

0

-.1

-.2

Particle trace

Turbulent boundary layer

__z .3i\yL_.2

0

-2 [ : _-_t_ _ _-_r--V-T-.._¢'J
0 .1 .2 .3 ,4 .5 .6 .7 .8 .9 1.01.1

YfYLE

-.40

-.35

--30

-.25

C p -.20

E

h

Surface pressure dlltdbutlon

O Experiment

-- Laminar boundary layer

..... Turbulent boundary layer

m

-.10

__05

__ A__ .J_k_! I___I ]
0 .1 .2 .3 ,4 .5 .6 .7 .8 .9 1.0 1.1

Y/YLE

Figure 24. Comparison of experimental and conical Navier-Stokes computational data for A = 67.5 °, ct = 16°,
and hi = 2.8.

51



bid

"13

CP

o

o
(,.;,

o

C',1

"_ 'X3

_o

Caoo

o,._

52
ORIGINAL PAGE _S
OF POOR QUh.LITY



r_

o_ L_

53



4

0

J _L_

0

0")
:

N ±±

m

0

n
0

0

0 0 0 0 0--

6_.......6 6 6 6-

54



Vapor screen

Experimental data

011 flow

Computational data

Cross,flow Mach number Particle trace

Laminar boundary layer

z .3 \_,?",, \. "_ --
YLE .2 '_\ '_i

-.1 /-.2 L l d
0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.01.1

YfYLE

Turbulent boundary layer

•' [ \ p-_>_ \ \

.4

7

d
0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.01.1

YlYLE

-.40 --

-.35 --

-.30

-.25 --

Cp -.20

-.15

-,10

-.05

0

Surface pressure distribution

0 Experiment

Laminar boundary layer

..... Turbulent boundary layer

I

__l A_ I I J_ [ I L L L_J
.1 .2 .3 .4 .5 .6 .7 .8 ,9 1.0 1.1

Y!YLe

Figure 26. Comparison of experimental and conical Navicr-Stokes computational data for A --= 60 °, c_ = 8°,

and M = 2.8.

55



VapOr screen

Experimental data
Oil flow

.7

.6

,5

.4

z.3

YLE .2

.1

CompUtational data

Cross-flow Math number
Laminar boundary layer

' " -- \ \ (I

-

-20 I 2 3 .4 5 6 7 8 9 1,011
YtYLE

Particle trace

.7

6

5

.4

3

YLE 2

1

0

-1

-2

Turbulent boundary layer

Surface pressure distribution

0 Experiment

Laminar boundary layer

..40 _ r

-.35 ..... Turbulent boundary laye

• .30 -f

-.25 "

Cp -.20

°

,9 1.0 1,1
0 .1

YHLc

{ I _ t : ¢_ 7 8 9 1.01.1
1 Z ,J q _ _ 7 • "

Y/Y_.E _ 6 °

Figure 27, Comparison of experimental and conical Navier-Stokes computational data for A = 60°, a --

and M = 2.8.

56



Cp

".20

".15

".10

".05

0

_= 75=

Cp

".20

".15

",10,

".05

0

".20

0 Experiment

-"-" Navier.Stokes (laminar boundary layer)--- Euler

A--. 6 7.5o

F" (X= 20 =

(Z= 16 °F

J

Cp

".15

-.10

".05

0

-.2oF
-.15

Cp .,. _ j_-.

0 L

== 12 •

-.20 --

".15 -

",10 - __--,,

Cp ".05 - /

0

•os o --L/_._.L__L. L_ j_.._.__.J___/
.2 .4 .6 .8 1.0

Y/YLE

YI_-E

Figure 28. Comparison of experimental, conical laminar Navfer-Stokes,pressure distributions for the 15 test Cases.

_=4 o

t

0 .2 .4 .6 .8 1.0
0

A= 60 =

- ,%.._,__%______......
=._-..-y _ ° o o oo_ _

t
I

-- j

oo 
I

-= - ----d
-_l_J...j..1 .J.j_j_A J_

.2 .4 .6 .8 1.0

Y/YLE

and conica/Eu/er C°mputationa/surface



0
¢_;,

©
_J

_d

©

O

i

_d

,-_ II

c",]

58 ORIGINAL P _"_ _'_''

OF POOR QUALITY



c_ O

° _

..Q

5g



0

2_

..Q

E ::z

_-: LL
r- 0
0

_E .-J
z

o _

!

(if) --
0

i:-:1
0

W

b") 03

-j

<T

L
0

W

f ri

W
I-.1

i
I__1

I:"J

• • III

0
C,.J

El_)

0

0

6
0

6

60



o

o

o
o

©

_g

°_

o Ir

o_fl
o

L_

61



b_O

p_

62



0

C'.J

Cd

O3

Cl

Oi

()

..Q k--

E)

C
L

r- C,

( r,

I

(f} •

o W

0

Lr)

I I"]1

r,J

0

(_:,

I--
I--
<r

L
I I

W
_J

Z
<I-

8

LL
C:,

LI")

I--I

d

o @

¢_ t::l
0

o

o
g

0,=,_

e_

0

0

b--I

0

63



_zo

t_

"0

0
.0

_ O

x _ _
_.lzw

oli l I I
t_ o _

• |" I'

i) --b,

N

0 Lr; 0 Lr;

_ '7 "7 q,

q

I .o

w _o

r_

°,=_

_o _

_'_ _ oo_

0 -_

ILl

64



_3

%

o_
T-i

@

o
@

%

o

O

_o_

•-_ II

o

o

ORtGtNAL PAGE IS

OF POOR QUALITY

65



p_

o_
c_

o

_Q

0

66



=;

_._ i.

-I

0

_d F

0

Cd

v
(£,
<T
p-

LL
0

W
_J
,.9

frj
Ill

C,.J

1-7

II")

I I

v
C)
.;:1-
t--
t--
-..:1-

L
0

W
_1
(_9
..'7-

(D
W

II'l

bT,
I •

CIJ

I__I 0
" • C,J

CI

d •

i
I

Ln_

I

i

oi
dl

i

i

=
i

l

=-
=

r

d

o
©

c_

"-d

o
r..)

67



0 Boundary-layer model had no influence on
the primary and secondary flow structures.

• Boundary-layer model influenced the
primary flow structure

(]) Boundary-layer model influenced the extent
of secondary separation

qD Boundary-layer model influenced the type
of cross-flow separation for attached leading-
edge flow

Figure 33.
cases.
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(a) Influence of boundary-layer model.

Summary of experimental, laminar Navier-Stokes, and turbulent Navier-Stokcs data for the 15 test
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d Laminar solutions had better agreement with
experimental data

p Turbulent solutions had better agreement withexperimental data

O Laminar and turbulent solutions agreed equally
well with experimental data
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Figure 33. Concluded.
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• Euler code correctly predicted primary flow
structure

O Euler code did not correctly predict the primary
flow structure

Figure 34. Summary of the experimental and Euler data for the 15 test cases.
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Figure 35. Summary of conditions at which the Navier-Stokes and Euler codes should be applied in supersonic
wing design.
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Appendix A

Turbulence Model

Theturbulencemodelusedin the Navier-Stokes
codeis the Baldwin-Lomaxmodel,whichis an al-
gebraiceddyviscositymodel. Modificationsto the
model,asproposedbyDeganiandSchiff(ref.23)are
incorporatedto accountforthelargeregionsofcross-
flowseparation.Thesemodificationsdealwith the
parameterF(s), which determines the length scales
and thus the eddy viscosity. In the regions of large

cross-flow separation, the function F(s) typically ex-

hibits two local maxima along a ray normal to the

body. The first maximum is associated with a bound-

ary layer. The second maximum is associated with

the primary vortex core and is typically larger than
the first maximum. If the second value is selected,

then the outer eddy viscosity is much too large and

distorts the primary and secondary flow patterns.

In the present investigation, a further problem
was identified with the selection of Fmax that is re-

lated to secondary separation. Around the location

of a separation point for a secondary vortex, the

boundary layer and vortical feeding sheet become
merged. Away from the separation point, the bound-

ary layer becomes better defined as the feeding sheet

grows and moves away from the surface. However,

the profile of the boundary layer is such that the max-
imum associated with the boundary layer is not de-

fined. Thus Fmax is determined by the feeding sheet,

as illustrated in figure A1. The contour data show
the locations of Fmax in the flow field. The line plot

beneath the contour data illustrates the rise of Fmax

in the region of secondary separation. The Fmax

parameter is seen to be significantly greater than

the maximum associated with the boundary layer in

the nonseparated regions such as near the centerline.

The net result is too large a value for the outer eddy

viscosity.

To determine the effect of this higher than nor-

mal eddy viscosity, a slightly finer grid (151 x 95)
was employed. This grid had more points within the

region of primary and secondary separation than did

the original grid (151 x 75). The finer grid solution

yielded a very similar solution. The problem of Fmax
being defined by the feeding sheet was reduced al-

though not eliminated. Essentially, because of the

greater number of cells defining the boundary layer,

the boundary-layer profile emerged closer to the sep-

aration point than was the case for the original so-

lution. The net result was a smaller eddy viscosity,

which yielded a slightly stronger secondary vortex.

However, the primary vortex core or secondary sep-

aration locations did not change.
Another approach was to not allow Fmax to vary

more than 20 percent from grid cell to grid cell.

In the regions where Fmax did significantly increase,
Fmax was set equal to the previous cell value. This

approach totally eliminated the problem associated

with the feeding sheet. Again, the net effect was a

smaller outer eddy viscosity, resulting in a slightly

stronger secondary vortex. However, there was no

influence on the primary vortex core and secondary

separation locations.
Another aspect of the turbulence model was asso-

ciated with those cases where boundary-layer model

affected the type of primary flow structure (i.e., at-

tached flow or separated flow). Experimentally the
models had a transition strip located 0.2 in. behind

and parallel to the leading edge. The purpose of the

strip was to ensure fully turbulent flow for attached
flow cases. However, the flow could be expected to

be laminar up to the transition strip, possibly up to

some point inboard of the strip. Therefore, several
solutions were obtained where the turbulence model

was only activated from the centerline to the point of

the transition strip (97 percent of semispan) and two

more inboard locations (95 percent and 70 percent

of semispan). The case examined was for A = 67.5 °,

= 8° , and M = 2.8. The results showed that

limiting the turbulence model as such did not influ-
ence the overall flow structure. The flow was still

attached at the leading edge with shock-induced sep-

aration occurring inboard. One explanation for this
observation is that the shock-induced separation pro-

duces a change in local flow angularity at the leading

edge.
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Appendix B

Three-Dimensional and Conical

Navier-Stokes Solutions for the 67.5 °

and 60 ° Delta Wings

Presented in this appendix are the computational
data from the three-dimensional and conical Navier-

Stokes solutions for the 67.5 ° and 60 ° delta wings at
a = 8°. Solutions with a laminar- and a turbulent-

boundary-layer condition are presented. The com-

putational data are presented here in the form of to-

tal Mach number contours, particle trace data and

surface pressure data. A discussion of the different

formats of computational data presentation is given
in the main text.

Computational data from the three-dimensional
laminar Navier-Stokes solution for the 67.5 ° delta

wing at a = 8° are presented in figure B1. Main flow

structures are labeled in the figure with the notation

given on page 2. The computed flow structure is

that of a primary vortex separating at the leading
edge with the core lying close to the surface of the

wing. The particle trace data of figure Bl(b) also

show the formation of a secondary vortex beneath the

thin primary vortex. The nondimensional size (i.e.,

Y/YLE versus z/YLE ) of the vortex decreases slightly

as the trailing edge is approached. Note that the

local Reynolds number increases as the trailing edge

is approached with a trailing-edge Reynolds number
of 2.41× 106 .

Computational data from conical laminar Navier-
Stokes solutions obtained at Reynolds numbers of

0.5 × 106, 1.0 × 106, and 2.4 × 106 for the 67.5 ° delta

wing at a = 8 ° are presented in figure B2. The coni-
cal computed flow structures are essentially the same

as those of the corresponding three-dimensional so-

lution. As was observed in the corresponding three-

dimensional solution, the conical solutions illustrate
a decrease in the nondimensional size of the primary

vortex as Reynolds number increases.

Computational data from the three-dimensional
turbulent Navier-Stokes solution for the 67.5 ° delta

wing at a = 8 ° are presented in figure B3. In con-

trast to the corresponding laminar solution, the flow
structure is that of attached flow at the leading edge

with a cross-flow shock and shock-induced separation

occurring inboard of the leading edge. These flow

structures appear to be insensitive to local Reynolds

number, which increases as the trailing edge is ap-

proached. The particle trace data of figure B3(b) also

show the formation just inboard of the leading edge

of a separation bubble that is not evident in the con-
tour data. This type of flow structure was observed

by Seshadri and Narayan (ref. 34) for shock-induced
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separated flows. The flow structure is a localized

separation occurring at the leading edge, as the flow

inboard appears to be unaffected by the presence of
the flow structure.

Computational data from conical turbulent

Navier-Stokes solutions obtained at Reynolds num-
bers of 0.5 x 106, 1.0 x 106, and 2.4 x 106 for the 67.5 °

delta wing at a = 8° are presented in figure B4. As

was observed in the corresponding three-dimensional
solution, the conical solutions predict attached flow

at the leading edge with shock-induced separation
that appears to be insensitive to Reynolds number.

The localized leading-edge separation noted in the

three-dimensional solution (see fig. B3(b)) is only

predicted in the Re = 2.41 x 106 conical solution,

as seen in figure B4(b).

Computational data from the three-dimensional

laminar Navier-Stokes solution for the 60 ° delta wing

at a = 8° are presented in figure B5. The computed

flow structure is that of attached flow at the leading

edge with a very weak cross-flow shock occurring in-

board of the leading edge. The data of figure B5(a)

and (b) also indicate smooth separation from the sur-
face of the wing to form a very thin vortex whose

core lies close to the surface of the wing. The vortex

arises from separation that occurs outboard of the

cross-flow shock. The surface pressure data of fig-

ure B5(c) show that the inboard edge of the primary

vortex moves slightly outboard as the trailing edge is

approached. The particle trace data of figure B5(b)

also show localized, leading-edge separation.

Computational data from conical laminar Navier-

Stokes solutions obtained at Reynolds numbers of
0.5 x 106, 1.0 x 106, and 1.73 x 106 for the 60 ° delta

wing at a = 8° are presented in figure B6. As was
observed in the corresponding three-dimensional so-

lution, the conical solutions predict attached flow at

the leading edge with a smooth separation occurring
inboard. The inboard edge of the vortex moves out-

board with increasing Reynolds number as was ob-

served in the corresponding three-dimensional solu-

tion. However, the particle trace data of figure B6(b)

also show the formation of a secondary vortex be-

neath the smoothly separated vortex for the Re =
1.73 x 106 case. This secondary vortex did not ap-

pear in the corresponding three-dimensional solution.
As noted for the turbulent boundary-layer solutions

for the 67.5 ° wing at a -- 8 °, the localized leading-

edge separation noted in the three-dimensional solu-

tion (see fig. B5(b)) is only predicted for the higher
Reynolds number case (i.e., Re = 1.73 x 106) as seen

in figure B6(b).

Computational data from the three-dimensional
turbulent Navier-Stokes solution for the 60 ° delta

wing at a = 8 ° are presented in figure B7.



Similarto the correspondinglaminarsolution,the
flowstructureis that of attachedflowat the lead-
ing edge.However,thethree-dimensionalturbulent
Navier-Stokessolutiondoesnot predict a smooth
separation,asthe turbulentboundary-layerflow is
moreresistantto separation.Instead,the three-
dimensionalturbulent Navier-Stokessolutionpre-
dicts shock-inducedseparationwherethe separa-
tion point occursdirectlybeneathor just inboard
of the point at which the cross-flowshock im-
pingeson the surfaceof the wing. In contrast,
thethree-dimensionallaminarNavier-Stokessolution
predicteda smoothseparationwherethe separa-

tion point occursoutboardof the cross-flowshock.
Thedataof figureB7 showthat the shock-induced
separationis insensitiveto localReynoldsnumber,
whichincreasesasthe trailing edgeis approached.
The trailing-edgeReynoldsnumberfor this caseis
1.73× 106.

ComputationaldatafromconicallaminarNavier-
Stokessolutionsobtainedat Reynoldsnumbersof
0.5x 106,1.0x 106,and1.73x 106for the60° delta
wing at a = 8° are presented in figure B8. The

conical computed flow structures and trends with

Reynolds number are essentially the same as those
of the corresponding three-dimensional solutions.

77



•7 xlc = 0.2
.6

I'q

FSp

-.1

-.2 1 I__J_.I I d

.7_
.6 -- x/c = 0,5 "_ \

.3 -- FSp

-12_ I I/ I I I I /I

.7-
x/c= 1.0 \

0 ,1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1

y/y_

(a) Total _'Iach number.
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Figure B2. Computational data from conical laminar Navier-Stokes solutions at various Reynolds numbers forA = 67.5 °, c_= 8°, and M = 2.8.
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Figure BT. Computational data for the three-dimensional turbulent Navier-Stokes solution for A = 60 °, a = 8 °,
and M = 2.8.
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Figure B8. Computational data from conical turbulent Navier-Stokes solutions for A = 60 °, a = 8 °, and
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